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Noise from shipping activity in North Atlantic coastal waters has been steadily

increasing and is an area of growing conservation concern, as it has the poten-

tial to disrupt the behaviour of marine organisms. This study examines the

impacts of ship noise on bottom foraging humpback whales (Megaptera
novaeangliae) in the western North Atlantic. Data were collected from 10 fora-

ging whales using non-invasive archival tags that simultaneously recorded

underwater movements and the acoustic environment at the whale. Using

mixed models, we assess the effects of ship noise on seven parameters of

their feeding behaviours. Independent variables included the presence or

absence of ship noise and the received level of ship noise at the whale. We

found significant effects on foraging, including slower descent rates and

fewer side-roll feeding events per dive with increasing ship noise. During 5

of 18 ship passages, dives without side-rolls were observed. These findings

indicate that humpback whales on Stellwagen Bank, an area with chronically

elevated levels of shipping traffic, significantly change foraging activity when

exposed to high levels of ship noise. This measureable reduction in within-dive

foraging effort of individual whales could potentially lead to population-level

impacts of shipping noise on baleen whale foraging success.
1. Introduction
Increased levels of anthropogenic noise have become a chronic condition in both

terrestrial and marine environments [1,2]. Noise pollution has been shown to alter

acoustic communication [3], distribution patterns [4] and stress responses [5,6] in

a wide range of taxonomic groups. Noise has also been shown to impact foraging

behaviours by masking sound produced by prey movement [7], by eliciting

an avoidance response or a cessation of foraging [8], or by altering prey beha-

viour [9]. These wide ranging effects are raising concerns about the impacts of

anthropogenic noise on species survival [1,2].

The impact of noise has been a major focus of cetacean research over the

past two decades, as whales and dolphins are highly dependent on sound

for critical life functions including communication and foraging [10]. Cetaceans

are exposed to a variety of anthropogenic noise sources [10] and have been

shown to respond in several ways, including physiological and context-depen-

dent changes in behaviour [5,8,10]. Some evidence suggests that odontocetes

(toothed whales and dolphins) may alter foraging behaviour in response to

noise exposure [11,12]. However, relatively few studies have investigated the

effects of ship noise on foraging behaviour in mysticetes (baleen whales).

Many mysticetes are found in coastal areas with high levels of ship traffic,

resulting in frequent mortalities from collisions [13]. Investigations of foraging
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Figure 1. TrackPlot still image demonstrating ribbon track and dive measurements for one bottom-feeding dive.
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blue (Balaenoptera musculus), finback (Balaenoptera physalus) and

humpback whales using surface behavioural observations

have found no detectable responses to loud low-frequency

noise [14,15]. The advent of multi-sensor tags has allowed for

exploration of subsurface behaviours of baleen whales [16].

In response to mid-frequency sonar playbacks, blue whales

show termination of feeding events at depth while humpbacks

demonstrate avoidance behaviours [17,18]. Preliminary

evidence suggests that close ship passage might result in

decreased foraging time in blue whales [19].

Humpback whales are generalist predators with diverse

diets and foraging behaviours intended to aggregate and

engulf small numerous prey [20]. One well-described fora-

ging method used by humpbacks in the Gulf of Maine is

bottom side-roll feeding on sand lance (Ammodytes spp.)

near the sea floor, particularly during night-time hours [21].

Humpbacks have demonstrated flexible acoustic behaviour

in the presence of noise [3,22,23], but few studies have inves-

tigated noise effects on their subsurface foraging behaviours.

Here, we use subsurface tag data to assess the impacts of

shipping noise on this foraging behaviour.
2. Methods
(a) Data collection and analysis
Field data were collected in the southern Gulf of Maine on and

around the Stellwagen Bank National Marine Sanctuary (Massa-

chusetts, USA) in June–July from 2006 to 2009 and April 2009.

Data were collected using archival digital acoustic recording

tags, Dtags [16], to simultaneously record the whale’s three-dimen-

sional behaviours and the acoustic environment. Details on field

data collection methods are documented in Friedlaender et al. [24].

Ten tag deployments were included in the analyses (electronic

supplementary material, table S1). These tag records contained

data between 1 h after sunset to 1 h before sunrise and included

the passage of at least one large ship on the acoustic record. Two

of the deployments came from the same individual in different

years. A total of 218 dives were analysed: 83 occurred in ship

noise exposure periods while 135 occurred with no ship noise. Sub-

surface behaviours were quantified using the software application

TrackPlot (figure 1) [25]. Seven behavioural measurements were

extracted from each dive for use as dependent variables in the

models: duration, rate of descent and ascent, maximum depth,

number of bottom side-roll feeding events, time between dives

and surface time immediately following each dive (figure 1).
The ship presence was determined through visual and aural

detection of ship noise in Dtag audio recordings (figure 2a). To

minimize effects of flow noise, we measured the received level

(RL) of ship noise within the 2–3 kHz frequency band for a

1 min period during the bottom time of each dive (RAVENPRO

v. 1.5) (electronic supplementary material).

(b) Statistics
To test whether the ship noise altered bottom foraging behaviours,

we performed linear mixed-effects models using the seven dive

metrics as dependent variables. Dependent variable data were

square root transformed to approximate normality. The two fixed

effects included the RL and the presence/absence of ship noise in

each dive (SN), with tag deployment as a random effect. Best

model fit was evaluated using Akaike’s Information Criterion cor-

rected for small sample sizes (AICc) [26]. Variable importance

values were calculated by summing Akaike weights (wi) of all

models including a particular variable (electronic supplementary

material) [26]. All statistical analyses were performed in R (v. 2.15.3).
3. Results
The presence of ship noise significantly affected three of the

seven dependent variable metrics tested (table 1; electronic sup-

plementary material, table S2). In the best-fit models, as RL

increased, the number of rolls decreased by 29% (t ¼ 22.12,

d.f.¼ 207, p-value ¼ 0.04) (electronic supplementary material,

figure S1a), and the descent rate decreased by 14.5%

(t ¼ 24.17, d.f. ¼ 207, p-value , 0.01) (electronic supplemen-

tary material, figure S1b). Ascent rate also decreased by 12.8%

as RL increased (t ¼ 22.40, d.f. ¼ 206, p-value ¼ 0.02); however,

ascent rate was faster by 0.002 m s21 during SN exposure

periods than in periods of no ship noise (t¼ 2.07, d.f. ¼ 206,

p-value ¼ 0.04). The interaction of RL and SN was positive but

non-significant (t ¼ 0.28, d.f. ¼ 205, p-value ¼ 0.78). RL was

the most important variable influencing all three response

variables (electronic supplementary material, table S3).

In five out of nine individuals, one or more dives without

bottom side-rolls occurred in the presence of ship noise. All of

these responding individuals were adult females: two with

their dependent calf, one pregnant and two who were neither

pregnant nor lactating. The individual with two deployments

showed this response in 2009, but not in 2006. These dives

lacked bottom-feeding side-rolls despite a maximum depth

near that of usual feeding dives immediately before and

after, though some no-roll dives were shallower than the
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Figure 2. (a) Spectrogram and (b) depth profile of whale mn08_182a demonstrating atypical dive in the presence of ship noise. Orange tick marks indicate bottom
side-rolls.

Table 1. Model coefficients, standard errors, t-values and p-values for best-fit models for descent rate, ascent rate and number of rolls.

response model variables estimate s.e. t-value p-value

descent rate RL intercept 1.558 0.127 12.271 ,0.01

RL 20.006 0.001 24.171 ,0.01

RL, SN intercept 1.624 0.148 10.968 ,0.01

RL 20.007 0.002 23.395 ,0.01

SN 0.013 0.019 0.858 0.392

ascent rate RL, SN intercept 1.474 0.186 7.910 ,0.01

RL 20.005 0.002 22.400 0.017

SN 0.040 0.019 2.069 0.040

RL�SN intercept 1.528 0.267 5.723 ,0.01

RL 20.006 0.003 21.847 0.066

SN 20.053 0.328 20.162 0.872

RL�SN 0.001 0.004 0.283 0.778

number of rolls RL intercept 3.413 0.752 4.541 ,0.01

RL 20.018 0.009 22.119 0.035

RL, SN intercept 3.984 0.879 4.531 ,0.01

RL 0.025 0.010 22.457 0.015

SN 0.114 0.094 1.208 0.228
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surrounding dives (figure 2). Whales did not demonstrate

bottom side-rolls in 11 out of 218 dives. Of the 11 no-roll dives,

seven occurred in ship noise exposure periods (7/83) and only

four without ship noise (4/135). A McNemar’s test with continu-

ity correction indicates that the percentage of dives with no rolls

significantly differed in periods of ship noise exposure versus

periods of no ship noise (McNemar’s x2 (1, N¼ 218)¼ 109.63,

p-value , 0.01). Five of 18 ship passages resulted in a no-roll
dive. Whales did not compensate by increasing side-rolls

following ship passage (Wilcoxon test, p-value . 0.05).
4. Discussion
While numerous studies have demonstrated modifications of

acoustic communication in cetaceans exposed to noise, few
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have assessed changes in baleen whale foraging behaviour. We

show that humpback whales decrease the number of bottom-

feeding events per dive and reduce feeding dive descent rate as

the intensity of ship noise increases, indicating that ship noise

can impact foraging rates and efficiency. Ship passages were

also correlated with dives without bottom side-rolls, which

implies either a cessation of feeding or a switch from bottom

side-roll feeding to another method. Our results provide some

of the first evidence to show statistically significant alterations

in baleen whale foraging behaviour from ship noise exposure.

There are several potential explanations for the observed

results. Whales may modify their diving behaviour in response

to a perceived threat from ship noise, given that they require

surface access to breathe. Ship noise could also affect prey be-

haviour; in the Gulf of Maine, sand lance seek refuge into

sandy seafloor substrate in response to disturbance [24]. If

sand lance retreat into substrate in increased ship noise, this

could affect the prey availability for foraging whales. Further,

if whales coordinate bottom feeding using paired burst vocali-

zations, which are within the same low-frequency band as ship

noise [27], ship noise could cause masking that further reduces

foraging efficiency.

Given the adaptability of humpback whales [23,24], we

expect the Gulf of Maine population to potentially show

habituation to human disturbance from ship noise, as they

have been regularly exposed to commercial and whale watch-

ing vessels for decades [28]. Therefore, it is especially

interesting that alterations to foraging behaviours were

detectable in this study, as it suggests that humpbacks are

unable to completely adjust to this disturbance. Short and

potentially chronic cessations of feeding can result in biologi-

cally relevant decreases in balaenopterid foraging efficiency

[17], which could manifest to decrease fitness. These behav-

ioural changes were also observed at night when there are

fewer ship interactions compared with the daytime hours
based on acoustic records; therefore, our results likely reflect

the lower limit of disturbance of ship noise on foraging be-

haviour over the course of 24 h. Humpback whales forage

during both day and night, albeit with different strategies

dependent on prey behaviour, and each time period is

likely critical to help satisfy their large energetic demands

[17,24]. Further research on the impacts of noise on daytime

foraging activities and variation in the sensitivity to different

age and sex classes is needed, as mother–calf pairs are often

more sensitive to disturbance [3,10]. Yet, these results are

among the first support that ship noise can impact humpback

whales’ foraging, making this source of disturbance a man-

agement concern. Chronic impacts of even small reductions

in foraging efficiency could affect individual fitness and

translate to population-level effects on humpback whales

exposed to ship noise in critical foraging areas.
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